If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x+41=6x+5x
We move all terms to the left:
x^2-7x+41-(6x+5x)=0
We add all the numbers together, and all the variables
x^2-7x-(+11x)+41=0
We get rid of parentheses
x^2-7x-11x+41=0
We add all the numbers together, and all the variables
x^2-18x+41=0
a = 1; b = -18; c = +41;
Δ = b2-4ac
Δ = -182-4·1·41
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{10}}{2*1}=\frac{18-4\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{10}}{2*1}=\frac{18+4\sqrt{10}}{2} $
| x^2-7x+41=6x+5x2−7x+41=6x+5 | | (x+59)÷42=86 | | 8x-5-3=8 | | -4)3x+2)=3(-4x+5) | | 5x+3(x-4)=6- | | {3}{5}x+2={2}{3}x-4 | | X2+2y=30 | | 6x-25+3x=47 | | 3x+48=8x+24 | | -5a+8=-2a+23 | | x+127=90 | | 0.79p+72=1.59p | | x=11x²-5x+6 | | -5(x+3)+10+2x=4x+8 | | 2x+13)/3+(x-13)/4=15/2 | | g-5=8.2 | | 2(x+4)=7x+10-5x | | -4/5(10x-25)=36 | | (20x-32)+(4x+20)=180 | | 3k+2=-2k+12 | | 3a+5+6a=23 | | 60+45x=133.50+24x | | 15 = c + 8 | | 65-4=3b+17 | | x^2=255456289 | | 21=5c+30-9-5c | | g-10+7g=5+3g | | 5/4-1/6x=7/8 | | 2(4r-3)=-3(-6r-8) | | 5x+1-2x=9+3x | | 6x+18=15x+8 | | 19-10x=x+30 |